velikol.ru
1

Подготовка к ЕГЭ

Работа состоит из двух частей и содержит 20 заданий. В Часть 1 включены 14 заданий обязательного уровня, в Часть 2 – 6 заданий повышенного уровня. Ответом на эти задания является либо целое число, либо число, записанное в виде десятичной дроби. При их выполнении надо уделить основное внимание проведению правильных преобразований и вычислений, т. е. тем действиям, которые приводят к получению верного числового ответа. Для экономии времени можно не обращать внимание на полноту и аккуратность записи необходимых выкладок или рассуждений, проводить в «уме» промежуточные преобразования, так как приводить запись решения не требуется.

Задания части 2 повышенного уровня сложности разнообразны по тематике, 4 из них – по материалу курса алгебры и начал анализа, два задания – по курсу планиметрии и стереометрии. Уровень этих заданий явно выше, чем в Части 1.

За верное выполнение заданий с кратким ответом базового уровня выставляется 1 балл.

Задания с развернутым ответом

Задания с развернутым ответом, включенные в работу, различаются по уровню сложности. В Часть 2 включены задания повышенного уровня сложности и задания высокого уровня сложности, которые доступны только тем, кто имеет высокую математическую подготовку и может творчески применять свои знания. Эти задания очень сложные, они доступны далеко не каждому не только хорошо подготовленному школьнику, но и отличнику. В тоже время задания повышенного уровня с развернутым ответом, включенные в Часть 2, доступны хорошо подготовленным на школьном уровне «хорошистам» и отличникам.

В задачах повышенного уровня с развернутым ответом проверяется владение известными алгоритмами действий и методами решений, которые нужно выбрать и применить в нестандартной ситуации, например, при рассмотрении различных случаев, следующих из условия задачи (в условии переменная содержится под знаком модуля), или потребуется переформулировать условие задачи, чтобы выбрать соответствующий способ ее решения (например, перевести условие с «графического языка» на аналитический язык, когда нахождение нулей функции «заменяется» решением уравнения). При их решении не потребуется выполнять многошаговые преобразования и вычисления, а также применять какой-либо особый, необычный рациональный прием решения. При записи решения этих задач не потребуется давать обоснования шагов решения. Так как правильный выбор и применение соответствующих правил, формул и алгоритмов действий или правильная переформулировка условия задачи будут свидетельствовать об усвоении поверяемого материала и знании границ его применения.

Критерии оценки выполнения этих заданий не требуют приведения обоснований выполненных шагов решения, а учитывают только правильность: выбранных приемов или методов решения, формул, правил и свойств математических объектов, выполнения преобразований и вычислений. Выполнение этих заданий оценивается экспертами и в зависимости от правильности приведенного решения за него выставляется от 0 до 2 баллов максимально.

Задания высокого уровня сложности с развернутым ответом, предлагаются не только для того, чтобы проверить умение учащихся отвечать на поставленный вопрос, но и умение обосновать свои действия, выводы, построить логически верную цепочку рассуждений и выкладок и математически грамотно записать решение.

При выполнении этих заданий надо обратить внимание на то, чтобы сделанные выкладки были последовательны и логичны, переходы к следующему шагу решения были обоснованы (выводы подкреплены ссылками на изученные свойства и признаки математических объектов, на изученные формулы), математические термины и символы использованы корректно.

Сложность заданий высокого уровня объясняется, в первую очередь тем, что при их решении необходимо применить знание материала, относящегося к различным разделам школьного курса математики. Например, дается уравнение, которое содержит квадратичную функцию и модуль логарифма, а при его решении надо решить неравенство. Или при решении неравенства требуется исследовать функцию на монотонность, для чего придется найти ее производную. В задании на исследование функции вполне может потребоваться знание тригонометрической функции (например, синуса) и области определения арифметического корня. Основная цель задач в Части 3 – проверка того, на сколько уверенно и творчески ученики умеют интегрировать и применять сведения и факты из различных разделов курса математики средней школы.

Выполнение этих заданий оценивается экспертами, и в соответствии с критериями оценки может быть выставлено от 0 до 4 баллов.

Вместе с тем структура экзаменационной работы претерпела определенные изменения. До 2005 года каждая часть работы состояла из заданий одного типа: первая включала только задания с выбором ответа, вторая – с кратким ответом, и только задачи высокого уровня представляли собой задания с развернутым ответом. С 2005 года в Части 1 используются не только задания с выбором ответа, но и задания с кратким ответом. Это связано с тем, что некоторые задания очень неудобно и неестественно выглядят при формулировке их в виде заданий с выбором ответа. Так, например, если в задании на решение уравнения в качестве ответов, из которых нужно выбрать один правильный, предлагаются корни уравнения, то не всегда получишь информацию о том, умеет ли ученик решать данное уравнение, так как он может выявить корень уравнения при помощи проверки подстановкой. Поэтому привычное ученикам задание «Решите уравнение…» приходится трансформировать в задания типа «Найдите сумму корней уравнения…» (когда уравнение имеет более одного корня) или «Какому промежутку принадлежит корень уравнения…» (когда уравнение имеет один корень). При этом формулировки становятся непривычными для учащихся, а выполнение задания требует кроме решения уравнения проведение дополнительного действия. Наличие дополнительного условия по сравнению со стандартной формулировкой может приводить к искажению процента выполнения этих заданий. Возможно, что часть учащихся, верно решив уравнение, неверно выбрала промежуток, которому принадлежит данный корень. По мнению И. Высоцкого, именно в связи с этим, с 2005 года для проверки умения решать уравнения используются задания с кратким ответом, что позволяет сохранить стандартную формулировку соответствующих этой цели заданий.

В заданиях на простейшие преобразования числовых выражений, как правило, решение заключается в одном-двух действиях, а потому подобрать несколько «правдоподобных» ответов к заданию весьма сложно. В этих случаях также целесообразнее давать задание с кратким ответом.

Кроме того, уменьшение числа заданий с выбором ответа позволяет снизить вероятность угадывания верных ответов на задания Части 1. С 2005 года принятая норма выставления удовлетворительной аттестационной отметки (выполнение не менее 6 заданий) практически сводит к нулю вероятность угадывания ответов на 6 заданий из 10.

Второе существенное отличие в структуре работы с 2005 года заключается в том, что в Части 2, содержащей задания повышенного уровня сложности, предполагается наряду с заданиями с кратким ответом использовать и задания с развернутым ответом. Заметим, что традиционно высокие оценки по математике выставляются тем учащимся, которые показывают умение найти решение сложной задачи и математически грамотно записать его, приводя соответствующие обоснования. До 2005 года эти умения проверялись при помощи заданий Части 3 экзаменационной работы. В 2004 году в эту часть входило 4 задания. И только одно из них было рассчитано на «отличников», подготовка которых отвечает требованиям, предъявляемым к «школьной пятерке», остальные три были рассчитаны на тех, кто имеет значительно более высокий уровень подготовки, отвечающий требованиям вступительных экзаменов в вузы. При этом система вставления оценок за ЕГЭ такова, что даже для получения аттестационной оценки «5» ученик может верно выполнить не все аттестационные задания, а несколько меньше. Например, в 2004 году можно было решить 20 задач, из которых ни одна не представлена задачей, требующей записи решения. Чтобы исправить создавшееся положение, два задания Части 2, т.е. задания повышенной сложности, отнесены к типу заданий с развернутым ответом; одновременно число заданий Части 3 было сокращено до трех. Как считает Е. Неискашева, сложность этих трех заданий остается высокой, что связано с необходимостью дифференцировать выпускников, действительно имеющих высокий уровень математической подготовки.

Материал минимумов содержания старшей и основной школы сгруппирован по темам, включающим близкие по тематике вопросы содержания или общие методы решения.

Перечислю основные вопросы содержания школьного курса математики, усвоение которых проверяется при сдаче ЕГЭ .

  1. ^ Выражения и преобразования.

Корень степени n. Степень с рациональным показателем. Логарифм. Синус, косинус, тангенс, котангенс. Прогрессии.

  1. ^ Уравнения и неравенства.

Уравнения с одной переменной. Равносильность уравнений: распознавать равносильные уравнения. Общие приемы решения уравнений. Решение простейших уравнений. Системы уравнений с двумя переменными. Неравенства с одной переменной. Системы неравенств. Совокупность неравенств.

  1. Функции.

Числовые функции и их свойства. Производная функции. Исследование функции с помощью производной. Первообразная.

  1. Числа и вычисления.

Проценты. Пропорции. Решение текстовых задач.

  1. ^ Геометрические фигуры и их свойства. Измерение геометрических величин.

Признаки равенства и подобия треугольников. Решение треугольников (сумма углов треугольника. Неравенство треугольника. Теорема Пифагора. Теорема синусов и теорема косинусов). Площадь треугольника. Многоугольники. Окружность. Равные векторы. Координаты вектора. Сложение векторов. Умножение вектора на число. Угол между векторами. Скалярное произведение векторов. Многогранники. Тела вращения. Комбинации тел.

С педагогической точки зрения отечественный тест ЕГЭ представляет собой тест успеваемости. По мнению С. Зеленова, теоретически тесты успеваемости подразделяются на два вида: тесты скорости и тесты мощности. По тестам скорости у испытуемых обычно не хватает времени ответить на все вопросы. По тестам мощности у каждого такая возможность есть, но только возможность, поскольку в таком тесте всегда содержатся заведомо трудные задания, обычно непосильные для большинства испытуемых.

В тестах ЕГЭ по математике их авторы соединили «в одном флаконе» оба направления. Опыт показывает, что реально за отведенное время и в жестких условиях атмосферы ЕГЭ ответить полностью правильно на все вопросы не может даже большинство учителей математики. Таким образом, подготовка к успешному написанию ЕГЭ отличается от привычной для нас методики обучения школьников математике «вообще».

А. В. Белошистая сформулировала некоторые принципы построения методической подготовки к ЕГЭ.

^ Первый принцип – тематический. Разумнее выстраивать такую подготовку, соблюдая «правило спирали» – от простых типов заданий до заданий со звездочками, от комплексных типовых заданий до заданий раздела С.

^ Второй принцип: на этапе подготовки тематический тест должен быть выстроен в виде логически взаимосвязанной системы, где из одного вытекает другое, т. е. выполненный «сегодня» тест готовит к пониманию и правильному выполнению «завтрашнего».

^ Третий принцип: все тренировочные тесты следует проводить с жестким ограничением времени. Занятия по подготовке к тестированию нужно стараться всегда проводить в форсированном режиме с подчеркнутым акцентированием контроля времени. Темп такого занятия учитель должен задать сразу и держать на протяжении всего урока во что бы то ни стало, используя время занятия до последней секунды. Этот режим очень тяжел школьникам на первых порах, но, привыкнув к этому, они затем чувствуют себя на ЕГЭ намного спокойнее и собраннее.

При подготовке к ЕГЭ происходит увеличение умственной нагрузки на уроках математики, что заставляет задуматься над тем, как поддержать у учащихся интерес к изучаемому предмету, их активность на протяжении всего урока.

Разрешить эту проблему можно, используя компьютер на уроках математики. Это позволит создать информационную обстановку, стимулирующую интерес учащихся, облегчит работу учителя и повысит эффективность обучения.